
1

Particle Swarm Optimization: a parallelized approach
Bortolotti Samuele, Izzo Federico University of Trento

Trento, Italy
samuele.bortolotti@studenti.unitn.it, federico.izzo@studenti.unitn.it

Abstract—Particle Swarm Optimization is an optimization
algorithm for nonlinear functions based on bird swarms.
It falls back into the sub-field of Bio-Inspired Artificial
Intelligence and it was designed from a simplified social model
inspired by the nature.

A key concept associated with PSO is the role of genetic
algorithms and evolution, the functioning is based on several
iterations that aim to identify the best possible position
represented as a point in a landscape.

The goal of this project is to design a parallelized imple-
mentation capable of exploring the solution space in a faster
way. This is done through the usage of two main libraries for
High-Performance Computing (HPC): OpenMPI and OpenMP.

The effectiveness of the proposed solution is tested using
the HPC cluster of the University of Trento among other
implementations found online.

Index Terms—ParticleSwarmOptimization; PSO; OpenMPI;
OpenMP; C; Bio-Inspired; HPC; Parallelization

I. Introduction

PSO focuses on two main definitions: the notion of particle and
the one of particle perception.

A particle can be seen as an entity which is characterized by:

• a position x depicting the candidate solution for our
optimization problem;

• a velocity component v, which is used in order to perturb
the particle;

• a performance measure f(x), also called fitness value, which
quantify the quality of the candidate solution.

The entire set of particles is referred as swarm.

Each particle needs to perceive the positions along with the
associated performance measures of the neighboring particles. In
this way, each agent remembers the position z associated to the
best performance of all the particles within the neighborhood,
as well as its own best performance so far y.

This project implements a version of PSO considering distance-
based neighborhood in a nearest neighbor fashion. In details,
each particle has a fixed number of neighbors, which depend
dynamically on the particle position on the landscape.

A. Parametrization
PSO requires the following parameters to be set:

• Swarm size: typically 20 particles for problems with dimen-
sionality between 2 and 200;

• Neighborhood size: typically 3 to 5, otherwise global neigh-
borhood;

• Velocity update factors.

B. Continuous Optimization
A swarm of particles is initialized with random positions and
velocity.

At each step, each particle updates first its velocity (equation
1):

v′ = w · v + ϕ1U1 · (y − x) + ϕ2U2 · (z − x) (1)

where:

• x and v are the particle current position and velocity,
respectively;

• y and z are the personal and social/global best position,
respectively;

• w is the inertia (weighs the current velocity);
• ϕ1, ϕ2 are acceleration coefficients/learning rates (cognitive

and social, respectively);
• U1 and U2 are uniform random numbers in range [0, 1].

Finally, each particle updates its position (equation 2):

x′ = x + v′ (2)

and in case of improvement, updates y (and eventually z).

C. State-of-the-art analysis
As a first approach to the problem, we have surfed the web in
order to look for pre-existing PSO implementations.

Based on what we have found, the approaches can be divided
into three main categories:

1. those ones which aim to change the behavior of the
algorithm introducing new features;

2. those ones which aim to solve a real world problem using
PSO as main algorithm;

3. those ones which aim to optimize the runtime execution
speed.

In our study we have decided to exclude the second category
of PSO algorithms since these solutions are strictly problem
dependent. Thus, a comparison would produce meaningless
results.

On the other hand, all those approaches which belong to first
category of problems can be employed as case studies for our
benchmarking analysis. However, it is strictly required to change
some implementation aspects by modifying directly the code.
In some cases, this requires a deep understanding of others’
code, most of the time a though job due to the absence of
documentation.

The third category is our perfect competitor, since they share
our same objective. However, there are several cases in which

https://doi.org/10.1109/ICNN.1995.488968

2

different PSO versions have been implemented. Hence, some
hands on is still mandatory.

In the following table we list some of the implementations we
have found online.

Ref. Year Type Code Note
[1] 1995 Serial No -
[2] 2019 Serial Yes 1
[3] 2019 Serial Yes 1
[4] 2020 Serial Yes 1
[5] 2020 Serial Yes 1
[6] 2014 MPI No -
[7] 2017 MPI/MP No -
[8] 2019 MPI/MP,CUDA Yes 1
[9] 2020 OpenMP Yes 2
[10] 2021 Serial,OpenMP Yes 1

The indexes in the notes refer to:

1. provides only global neighborhood implementation. Thus,
the comparison would be untruthful as those implementa-
tions have a clear advantage in the execution time due to
a favorable topology;

2. provides PSO with different neighborhood versions but
without a distance based approach. Hence, the implication
are the same as for the point 1.

According to the previous statements, we claim that we have
implemented a PSO version which differ from the ones we
have decided to consider since it has a different notion of
neighborhood which makes it harder to parallelize.

II. Main step towards parallelization
In this section the report provides a detailed description of the
major contribution we have provided to the serial parallelization
in order to move towards an efficient hybrid OpenMP-MPI
solution.

A. Serial version of the algorithm
The main steps of the algorithm are:

1. initialize the particles in the swarm according to the
problem dimensionality;

2. exchange particles’ positions among within the swarm;
3. sort the particles according to a distance measure (eu-

clidean distance) in ascending order;
4. update the particles position and velocity (eq. 1 and 2).

As a first approach, we have tried to use OpenMP directives in
order to generate a thread for each loop iteration whenever it
was possible.

However, OpenMP fork-join model requires a non negligible
overhead so as to spawn multiple threads which are eventually
joined into the master at the end of the OpenMP block. For
relatively small problems this operation was a time-consuming
procedure which leads to a significant rise in execution time
with respect to the single thread model. Moreover, during the
experiments we have not been able to observe the threads
advantage we were hoping for. We assume that the main
reason behind this non-tangible advantage are the optimization
provided by gcc at compile time and the non-optimal thread
allocation patterns performed on the cluster.

In the final version of the application, we have included the
OpenMP directives only in the portion of the code where
we thought it was needed, even if the advantage in terms of
time were not satisfactory compared to the single threaded
application.

For the neighborhood sort, the program relies on quicksort. The
main reason behind this choice is the amount of parallelization
this algorithm can provide.

B. Parallel version of the algorithm
We have distributed the workload among N different processes
in the cluster using the MPI library and we have exploited
multiprocessing via OpenMP for a couple of different shared-
memory tasks.
1) Architecture: In order to subdivide the work and to carry
out the final computation, the architecture proposed by the
report focuses on the all-to-all parallel computational pattern
presented in figure 1.

The all-to-all parallel pattern is implemented using
MPI_Allgather and it is characterized by the exchange
of individual messages from every process to any other process.

Figure 1. Communication schema.

2) Message: To send a message between different processes we
created a custom MPI data type called broadcastMessage_t.
Its purpose is to inform the receiver process about the particles’
position and fitness of the sender. The structure is composed by
a timestamp, which is needed for logging purposes on the sqlite
database, the current iteration of the algorithm, the identifier
of the particle, the sender rank, and the current solution.
3) Communication pattern: The communication between the
different processes is synchronous.

Firstly, each process takes charge of a given number of particles.
In details, let N be the number of particles the user has requested
to the program to manage and let p be the number of processes
available to MPI. Without the need of synchronization nor
of message exchange, each process creates N/p particles and
the remaining N%p ones are splitted among the remaining
processes.

To carry out this operation, each process embeds its own
particles in an array of define_datatype_broadcast_message.
Then, the particle information exchange happens with an
MPI_Allgather communication primitive.

As presented in figure 1, MPI_Allgather is suitable for the
problem since it is an all-to-all communication channel and it
allows to reunite all the particles of each process into a single

3

vector, which, at the end of the communication, will be equal
for each process.

Once each process knows everything about the others, the
application needs to consider the neighbor contributions in
order to update the process particles’ position and velocity.

At this point, each process can sort all the particles, whose
position is known thanks to the MPI_Allgather communication,
with respect to all particles proper to the process, according to
the euclidean distance. In this way, for each process particle it
is possible to identify the k-th nearest neighbors.

Finally, by applying the position and velocity update equations
1 and 2 it is possible to evolve the algorithm and approach the
target function optima.

III. Benchmarking
We devised a full analysis of our algorithm performance changing
the number of threads, the number of processes and the PBS
process allocation pattern, in order to understand how the
running time would have been affected.

A. Problem configuration
We devised a configuration file which is the same for every run,
so as to have a common baseline.

The configuration is listed below:

• problemDimension = 50
• particlesNumber = 5000
• iterationsNumber = 500
• neighborhoodPopulation = 5000
• weights: w = 0.8, phi_1 = 0.3, phi_2 = 0.3
• functions: fitness = sphere, distance = euclidean, fitness-

Goal = minimum

The amount of particles and the neighborhood population are
unreasonable for any known problem but they were chosen to
show the clear advantage brought by a multi process solution.

B. Cluster jobs
In order to have high-quality and trustworthy results to examine,
as indicated in the repository structure, we created a script that
allowed us to send thousands of tasks to the University’s HPC
cluster over several days.

The number of tests we have ran in total is around 1280,
in particular we tried every possible combination of different
parameters:

• processes: chosen between [1 2 4 8 16 32 64];
• threads: chosen between [1 2 4 8 16 32 64];
• select: chosen between [1 2 3 4 5];
• places: chosen between [pack scatter pack:excl

scatter:excl];

C. Results
All the job configurations were tested by both members of the
group in order to validate and reduce possible noise of the
results.

Figure 2 shows the amount of jobs we have run and the
associated time exceeded rate.

1 2 4 8 16 32 64
processes

0

20

40

60

80

100

tim

e
ex

ce
ed

ed
 ru

ns

of time exceeded runs per process
1 threads
2 threads
4 threads
8 threads

16 threads
32 threads
64 threads

Figure 2. Number of time exceeded runs per process.

The presented figure highlights a correlation between the failure
rate and the number of processes. Thus, we have tried to
investigate the main reason behind this weird behavior.

To begin with, we have kept constant the number of processes
and we have increased the number of chunks for our jobs.

Figure 3 shows the number of failed runs associated with the
corresponding number of threads. As a matter of fact, the more
the requested chunks, the more the cores for the job are. Hence,
since the number of MPI processes is always the same, unused
cores can host threads, which could be a reasonable explanation
for the low amount of failed jobs in higher chunks requests.

0 10 20 30 40 50 60
threads

0

5

10

15

20

tim

e
ex

ce
ed

 ru
ns

Time exceed & thread numbers correlation

1 chunk
2 chunk
5 chunk

Figure 3. Threads and time exceed runs.

This proof of concept highlights how the overhead paid for
a continuos context switch introduced by OpenMP is higher
than the performance gain due to the parallelization. Therefore,
we came to the conclusion that since several optimizations are
already included within modern compilers such as gcc, OpenMP
introduces only an unwanted overhead for the problem that we
are facing. Hence, the optimal scenario is represented by the
single threaded multi-process case.

The previously described phenomena is also observable from
figure 4. From there, it is possible to see that the execution time
increases when the number of threads increases. Specifically,
the dots in the plot represent the executed jobs while the size
of the dots expresses the number of correctly terminated runs
used to compute the average.

A part from the efficiency issues in the the multi-threaded
scenario, we have deepen our benchmark analysis by considering

https://gcc.gnu.org/

4

0 20 40 60 80 100
processes

0

1000

2000

3000

4000

5000

6000

7000

In
te

rn
al

 ti
m

e
in

 se
co

nd
s

Performance decrease with increasing threads
1 threads
8 threads
16 threads
32 threads

Averaged over 7 runs
Averaged over 77 runs
Averaged over 196 runs
Averaged over 280 runs

Figure 4. Thread and time exeuction runs.

single threaded jobs. Figure 5 shows the execution time differ-
ence between various configuration places, where excl means
exclusive.

0 20 40 60 80 100
processes

0

1000

2000

3000

4000

5000

In
te

rn
al

 ti
m

e
in

 se
co

nd
s

Performance gain averaged over ~20 runs for each point
Internal pack
Internal pack_excl
Internal scatter
Internal scatter_excl

Figure 5. Processes and time execution runs.

The plot suggests that the difference in terms of execution time
between exclusive chunks and shared ones is marginal with
respect to the entire time needed for the job execution. This
implies that the computation time of the job is markedly higher
then the scheduling time between other users’ processes. For
the same reason, we can claim that the overall computation
time does not suffer from the network overhead. The last
statement can be appreciated from the small differences in term
of execution time between pack and scatter jobs executions.

Furthermore, we have highlighted an elbow point in figure 6.
This spot identifies the best visual tradeoff between number of
processes and the execution time of the parallel solution. Indeed,
for the problem configuration used for our tests, more than 16
processes do not bring an enough gain in order to motivate the
expenses associated to the PBS request.

As mentioned in section I-C, the analysis of the available
similar works has required to directly manage others’ code.
Unfortunately, since the intricate problem was resolved in a
matter of seconds, we claim that the findings are deceptive. We
believe that the main reasons are the way some PSO instances
perform the iterations since some of them stop whenever the
solution is below an error threshold, hence performing fewer
iterations than those required; as well as our difficulty in
comprehending the actual behavior of other people’s code, which
has resulted in the development of an inconsistent algorithm.

Based on the prior results, we have chosen to take into account

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
processes

200

400

600

800

1000

1200

1400

In
te

rn
al

 ti
m

e
in

 se
co

nd
s

Performance gain averaged over ~20 runs for each point (elbow point)
Internal pack
Internal pack_excl
Internal scatter
Internal scatter_excl

Figure 6. Processes and time execution runs elbow point.

only the multi-process solution, and we have deepened our
investigation by examining the parallel performance improve-
ment using speedup and efficiency graphs. To begin with, the
notion of scalability cannot be directly analyzed considering
the problem we are optimizing. The reason for that regards the
notion of problem size, which cannot be trivially defined. Naively,
one would conclude that the problem size is doubled when
the problem dimension is doubled, however, the parallelization
influence is limited only in the time for the position and
velocity update. On the other hand, we cannot argue that
the problem size is doubled when the number of particles is
doubled, since the problem persists, but holds in the opposite
direction, namely only some portions of the code benefit from the
parallelization. Therefore, we claim that the concept of problem
size is represented by a tight coupling between the problem
dimension and the number of particles. Due to this non-trivial
correlation, we have decided to focus only on one hard problem
configuration and support our results with hundreds of runs.

0 20 40 60 80 100
processes

0

20

40

60

80

100

Pa
ra

lle
l s

pe
ed

up

Lin
ea

r

Speedup

Figure 7. Speedup

From figure 7 we can see that the speedup is very limited.
This can be seen as a consequence of the time needed for

5

communication between multiple processors, as at the end of
each iteration all the processes must be synchronized and the
number of exchanged messages is considerably high. Therefore,
we claim that the overhead time we pay for the parallelization
plays a relevant role, however, parallelization is still capable
of providing a massive improvement in terms of time. This
inevitably implies that the perfect parallelization and the ideal
speedup cannot be achieved, as highlighted in the plot.

0 20 40 60 80 100
processes

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Ef
fic

en
cy

Efficiency

Figure 8. Efficiency

Likewise figure 7, figure 8 shows the efficiency curve considering
only the jobs run with MPI, which is the reason why the
efficiency does not start with 1. As a first consideration, the
single process MPI job requires additional time compared to the
serial version of the program to complete the execution, showing
that the MPI, if not used properly introduces a non-negligible
overhead. The efficiency plot, on the other hand, shows that the
best trade-off between the number of processes employed and
the speedup gained has two peaks, respectively around 3 and 12
processes. Furthermore, we can see that the more the number
of processes the less the efficiency is, which means that despite
taking less time to execute, it is not convenient to employ a huge
number of processes. Moreover, figure 8 highlights an irregular
curve, we believe that this is a consequence of an inhomogeneous
cluster, hence, there are nodes which are slower compared to
others.

To conclude, table I provides a complete overview of the program
analysis.

IV. Final discussion

Up until this point, we produced a hybrid OpenMP-MPI
algorithm to solve complex continuous optimization problems,
equipped with an efficient and reproducible DevOps pipeline.

We have realized that thread parallelization does not fit well
all the problems. Indeed, due to the high overhead implied by

Pr. Seconds Diff Speedup Efficiency Type
1 2099 0 1 1 Serial
1 4997 -2898 0.41 0.41 OpenMPI
2 2392 -293 0.87 0.43 OpenMPI
3 1564 535 1.34 0.44 OpenMPI
4 1227 872 1.70 0.42 OpenMPI
5 1128 971 1.86 0.37 OpenMPI
8 629 1470 3.33 0.41 OpenMPI
12 396 1703 5.29 0.44 OpenMPI
16 307 1792 6.82 0.42 OpenMPI
20 284 1815 7.38 0.36 OpenMPI
24 218 1881 9.62 0.40 OpenMPI
32 159 1940 13.18 0.41 OpenMPI
40 155 1944 13.50 0.33 OpenMPI
48 114 1985 18.32 0.38 OpenMPI
64 93 2006 22.37 0.34 OpenMPI
80 75 2024 27.95 0.34 OpenMPI
96 77 2022 27.20 0.28 OpenMPI

Table I
Speedup and efficiency table.

the thread generation, we have observed that using OpenMP
worsen the result, not providing the much-wanted speed benefit.

Benchmarking in the case of thread parallelization is a task
which is far from trivial. Every system may perform differently
in the presence or absence of threads. Moreover, it is hard to
decide whether to parallelize or not some piece of code based on
general assumptions. As an effective parallelization, we started
our project by parallelizing each for loop in the code. This has
resulted in a waste of resources and a worsening of performances
for small-size problems. Unfortunately, the same has happened
even in the case when the threads acted on the most time-
consuming region of the code.

To conclude, the program we provided is suitable for single-
threaded process parallelization and, as shown in the efficiency
and speedup plots, it provides the best result when the number of
processes is limited, as even if the computational time decreases,
the more the processes the more the overhead required for the
MPI communication to take place is.

A. Future Work
As a further work, it would be interesting to complement the
already present architecture with different type of neighborhood
and analyze which configuration brought the best results in
presence of parallelization, and in terms of quality of the
provided solutions. However, the scope of our project was to
implement the above described parallel algorithm, which already
posed significant challenges, especially because we could not
base our implementation on pre-existing works.

6

References
[1] J. Kennedy and R. Eberhart, “Particle swarm opti-

mization,” in Proceedings of ICNN’95 - international
conference on neural networks, 1995, vol. 4, pp. 1942–1948
vol.4.

[2] toddguant, “PSO library for c.” https://github.com/
toddgaunt/cpso, 2019.

[3] souusouho, “Succing PSO.” https://github.com/
sousouhou/succinctPSO, 2019.

[4] kkentzo, “Pso.” https://github.com/kkentzo/pso, 2020.

[5] fisherling, “Pso.” https://github.com/fisherling/pso,
2020.

[6] A. O. S. Moraes, J. F. Mitre, P. L. C. Lage, and A. R.
Secchi, “A robust parallel algorithm of the particle swarm
optimization method for large dimensional engineering
problems,” Applied Mathematical Modelling, vol. 39, no.
14, pp. 4223–4241, 2015.

[7] N. Nedjah, R. de Moraes Calazan, and L. de Macedo
Mourelle, “A fine-grained parallel particle swarm opti-
mization on many-core and multi-core architectures,” in
Parallel computing technologies, 2017, pp. 215–224.

[8] abhi4578, “Parallelization-of-PSO.” https://github.com/
abhi4578/Parallelization-of-PSO, 2019.

[9] LaSEEB, “Openpso.” https://github.com/abhi4578/
openpso, 2020.

[10] pg443, “Particle-swarm-optimization-
OpenMP.” https://github.com/pg443/
Particle-Swarm-Optimization-OpenMP, 2021.

https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://github.com/toddgaunt/cpso
https://github.com/toddgaunt/cpso
https://github.com/sousouhou/succinctPSO
https://github.com/sousouhou/succinctPSO
https://github.com/kkentzo/pso
https://github.com/fisherling/pso
https://doi.org/10.1016/j.apm.2014.12.034
https://doi.org/10.1016/j.apm.2014.12.034
https://doi.org/10.1016/j.apm.2014.12.034
https://github.com/abhi4578/Parallelization-of-PSO
https://github.com/abhi4578/Parallelization-of-PSO
https://github.com/abhi4578/openpso
https://github.com/abhi4578/openpso
https://github.com/pg443/Particle-Swarm-Optimization-OpenMP
https://github.com/pg443/Particle-Swarm-Optimization-OpenMP

	Introduction
	Parametrization
	Continuous Optimization
	State-of-the-art analysis

	Main step towards parallelization
	Serial version of the algorithm
	Parallel version of the algorithm
	Architecture
	Message
	Communication pattern

	Benchmarking
	Problem configuration
	Cluster jobs
	Results

	Final discussion
	Future Work

	References

