
Particle Swarm Optimization
A parallelized approach

Samuele Bortolotti Federico Izzo

University of Trento

December 14, 2022

Samuele Bortolotti, Federico Izzo Particle Swarm Optimization University of Trento 1 / 17

https://github.com/samuelebortolotti
https://github.com/fedeizzo
https://github.com/samuelebortolotti
https://github.com/fedeizzo

Introduction

Particle Swarm Optimization
Particle Swarm Optimization is an optimization algorithm for
nonlinear functions based on bird swarms.
In PSO, a particle is characterized by:

position x ;
velocity v ;
performance measure f (x);
personal best y ;
global best position z .

The solution is achieved by perturbing each particle according to the
neighbors:

1 v ′ = w · v + ϕ1U1 · (y − x) + ϕ2U2 · (z − x)
2 x ′ = x + v ′

Samuele Bortolotti, Federico Izzo Particle Swarm Optimization University of Trento 2 / 17

https://github.com/samuelebortolotti
https://github.com/fedeizzo

Particle Swarm Optimization

Easom function

f (x) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2)

Figure 1: PSO start Figure 2: PSO mid
Figure 3: PSO end

Samuele Bortolotti, Federico Izzo Particle Swarm Optimization University of Trento 3 / 17

https://github.com/samuelebortolotti
https://github.com/fedeizzo

DevOps

Pipeline
The proposed solution is provided with a pipeline for containers
creation and usage suitable for a cluster environment.

Figure 4: Container creation Figure 5: Container pull

Samuele Bortolotti, Federico Izzo Particle Swarm Optimization University of Trento 4 / 17

https://github.com/samuelebortolotti
https://github.com/fedeizzo

Analyzing the program behavior

In order to know each process and thread state and visualize a
thread-safe logging library has been employed: The logs follows a
common pattern so as to be easily processed.

15:27:58 DEBUG : PSODATA :: problem dimension :: 2
...
15:27:58 DEBUG : New best global solution found
...
15:27:58 INFO : COMPUTING :: iteration 10/10
Best fitness 4.690962

To recover the particles’ positions during the entire program
execution, we have stored each particle position at each iteration
within a SQLite database.

Samuele Bortolotti, Federico Izzo Particle Swarm Optimization University of Trento 5 / 17

https://github.com/samuelebortolotti
https://github.com/fedeizzo

Serial version of the algorithm

Algorithm 1 Particle Swarm Optimization (Nearest Neighbors)
1: function PSO(S, D, MAX_IT , n, f , v , x , xmin, xmax , vmax)
2: Initialize(S, D, f , v , x , xmin, xmax , vmax)
3: it = 0
4: repeat
5: for each particle i ∈ S do
6: if f (xi) < f (pbi) then
7: pbi ← xi
8: end if
9: end for

10: S ′ = Copy(S)
11: for each particle i ∈ S do
12: S ′ = Sort(S’, i)
13: for each particle j ∈ S ′ do
14: if f (xj) < f (gbi) then
15: gbi ← xj
16: end if
17: end for
18: end for
19: for each particle i ∈ S do
20: for each dimension d ∈ D do
21: vi ,d = vi ,d + C1 · Rnd(0, 1) · [pbi ,d − xi ,d] + C2 · Rnd(0, 1) · [gbd − xi ,d]
22: xi ,d = xi ,d + vi ,d
23: end for
24: end for
25: it ← it + 1
26: until it < MAX_ITERATIONS
27: return x
28: end function

Samuele Bortolotti, Federico Izzo Particle Swarm Optimization University of Trento 6 / 17

https://github.com/samuelebortolotti
https://github.com/fedeizzo

Hybrid parallelization

We propose an all-to-all parallel computational solution using
MPI_Allgather.

Figure 6: Parallel Architecture

Samuele Bortolotti, Federico Izzo Particle Swarm Optimization University of Trento 7 / 17

https://github.com/samuelebortolotti
https://github.com/fedeizzo

Hybrid parallelization (cont’d)

Once each process knows everything about the others, PSO
considers the neighbor contributions.

To compute the particle’s neighboring positions we have employed
the quicksort algorithm.

Figure 7: Parallel Quicksort

Finally, the algorithm evolves by updating velocity and position.

Samuele Bortolotti, Federico Izzo Particle Swarm Optimization University of Trento 8 / 17

https://github.com/samuelebortolotti
https://github.com/fedeizzo

Benchmarking, first conclusions

The problem we have decided to address consists in solving the

sphere function
(

f (x1, x2, . . . , xn) =
n∑

i=1
x2

i

)
with:

50 particle dimensions;
500 iterations;
5000 particles.

We have run around 1280 tests considering every possible
combination of different parameters:

processes: [1 2 4 8 16 32 64];
threads: [1 2 4 8 16 32 64];
chunks: [1 2 3 4 5];
places: [pack scatter pack:excl scatter:excl].

Samuele Bortolotti, Federico Izzo Particle Swarm Optimization University of Trento 9 / 17

https://github.com/samuelebortolotti
https://github.com/fedeizzo

Benchmarking, time exceed

Many of the submitted experiments failed due to time exceeded
errors. At a first sight, it seems that the failure rate is correlated
with the increasing number of processes used for the computation.

1 2 4 8 16 32 64
processes

0

20

40

60

80

100

tim

e
ex

ce
ed

ed
 ru

ns

of time exceeded runs per process
1 threads
2 threads
4 threads
8 threads

16 threads
32 threads
64 threads

Figure 8: Number of failed run per process

Samuele Bortolotti, Federico Izzo Particle Swarm Optimization University of Trento 10 / 17

https://github.com/samuelebortolotti
https://github.com/fedeizzo

Benchmarking, threads fault
A more depth analysis highlights that the problem is related to
threads’ overhead.

0 20 40 60 80 100
processes

0

1000

2000

3000

4000

5000

6000

7000

In
te

rn
al

 ti
m

e
in

 se
co

nd
s

Performance decrease with increasing threads
1 threads
8 threads
16 threads
32 threads

Averaged over 7 runs
Averaged over 77 runs
Averaged over 196 runs
Averaged over 280 runs

Figure 9: Thread and time exceeded correlation

Samuele Bortolotti, Federico Izzo Particle Swarm Optimization University of Trento 11 / 17

https://github.com/samuelebortolotti
https://github.com/fedeizzo

Benchmarking, single thread solution

The time required for the execution decreases if the number of
processes is increased;
The proposed solution is influenced neither by the network
overhead nor exclusive nodes.

0 20 40 60 80 100
processes

0

1000

2000

3000

4000

5000

In
te

rn
al

 ti
m

e
in

 se
co

nd
s

All time interval
Internal pack
Internal pack_excl
Internal scatter
Internal scatter_excl

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
processes

200

400

600

800

1000

1200

1400

In
te

rn
al

 ti
m

e
in

 se
co

nd
s

Elbow point

Internal pack
Internal pack_excl
Internal scatter
Internal scatter_excl

Performance gain averaged over ~20 runs for each point

Figure 10: Processes performance

Samuele Bortolotti, Federico Izzo Particle Swarm Optimization University of Trento 12 / 17

https://github.com/samuelebortolotti
https://github.com/fedeizzo

State of the Art Analysis

Ref. Year Type Code Note

Kennedy et
al. (1995)

1995 Serial No -

toddguant (2019) 2019 Serial Yes 1
souusouho (2019) 2019 Serial Yes 1
kkentzo (2020) 2020 Serial Yes 1
fisherling (2020) 2020 Serial Yes 1
Moraes et al.
(2015)

2014 MPI No -

Nedja et al. (2017) 2017 MPI/MP No -
abhi4578 (2019) 2019 MPI/MP,CUDA Yes 1
LaSEEB (2020) 2020 OpenMP Yes 2
pg443 (2021) 2021 Serial,OpenMP Yes 1

only global neighborhood (1) no distance-based implementation (2)
Samuele Bortolotti, Federico Izzo Particle Swarm Optimization University of Trento 13 / 17

https://github.com/samuelebortolotti
https://github.com/fedeizzo

Benchmarking, final remarks

0 20 40 60 80 100
processes

0

20

40

60

80

100

Pa
ra

lle
l s

pe
ed

up

Lin
ea

r

Speedup

Figure 11: Speedup

0 20 40 60 80 100
processes

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Ef
fic

en
cy

Efficiency

Figure 12: Efficiency

Samuele Bortolotti, Federico Izzo Particle Swarm Optimization University of Trento 14 / 17

https://github.com/samuelebortolotti
https://github.com/fedeizzo

Conclusion and future work

Up until this point, we produced a hybrid OpenMP-MPI algorithm
to solve complex continuous optimization problems.

From the benchmarking analysis we claim:

thread parallelization does not fit well our solution;
benchmarking the algorithm is far from being trivial;
the program provides its best result when the number of
processes is limited.

As a future work, it would be interesting to:

complement the already present architecture with different
types of neighborhoods;
analyze which configuration brought the best results.

Samuele Bortolotti, Federico Izzo Particle Swarm Optimization University of Trento 15 / 17

https://github.com/samuelebortolotti
https://github.com/fedeizzo

References I

abhi4578. 2019. “Parallelization-of-PSO.”
https://github.com/abhi4578/Parallelization-of-PSO.

fisherling. 2020. “Pso.” https://github.com/fisherling/pso.
Kennedy, J., and R. Eberhart. 1995. “Particle Swarm Optimization.”

In Proceedings of ICNN’95 - International Conference on Neural
Networks, 4:1942–1948 vol.4.
https://doi.org/10.1109/ICNN.1995.488968.

kkentzo. 2020. “Pso.” https://github.com/kkentzo/pso.
LaSEEB. 2020. “Openpso.” https://github.com/abhi4578/openpso.
Moraes, Antonio O. S., João F. Mitre, Paulo L. C. Lage, and

Argimiro R. Secchi. 2015. “A Robust Parallel Algorithm of the
Particle Swarm Optimization Method for Large Dimensional
Engineering Problems.” Applied Mathematical Modelling 39
(14): 4223–41.
https://doi.org/https://doi.org/10.1016/j.apm.2014.12.034.

Samuele Bortolotti, Federico Izzo Particle Swarm Optimization University of Trento 16 / 17

https://github.com/abhi4578/Parallelization-of-PSO
https://github.com/fisherling/pso
https://doi.org/10.1109/ICNN.1995.488968
https://github.com/kkentzo/pso
https://github.com/abhi4578/openpso
https://doi.org/10.1016/j.apm.2014.12.034
https://github.com/samuelebortolotti
https://github.com/fedeizzo

References II

Nedjah, Nadia, Rogério de Moraes Calazan, and Luiza de Macedo
Mourelle. 2017. “A Fine-Grained Parallel Particle Swarm
Optimization on Many-Core and Multi-Core Architectures.” In
Parallel Computing Technologies, edited by Victor Malyshkin,
215–24. Cham: Springer International Publishing.

pg443. 2021. “Particle-Swarm-Optimization-OpenMP.” https:
//github.com/pg443/Particle-Swarm-Optimization-OpenMP.

souusouho. 2019. “Succing PSO.”
https://github.com/sousouhou/succinctPSO.

toddguant. 2019. “PSO Library for c.”
https://github.com/toddgaunt/cpso.

Samuele Bortolotti, Federico Izzo Particle Swarm Optimization University of Trento 17 / 17

https://github.com/pg443/Particle-Swarm-Optimization-OpenMP
https://github.com/pg443/Particle-Swarm-Optimization-OpenMP
https://github.com/sousouhou/succinctPSO
https://github.com/toddgaunt/cpso
https://github.com/samuelebortolotti
https://github.com/fedeizzo

